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ABSTRACT

We describe a general approach to several RNA
sequence analysis problems using probabilistic models
that flexibly describe the secondary structure and
primary sequence consensus of an RNA sequence
family. We call these models ‘covariance models’. A
covariance model of tRNA sequences is an extremely
sensitive and discriminative tool for searching for
additional tRNAs and tRNA-related sequences in
sequence databases. A model can be built
automatically from an existing sequence alignment. We
also describe an algorithm for learning a model and
hence a consensus secondary structure from initially
unaligned example sequences and no prior structural
information. Models trained on unaligned tRNA
examples correctly predict tRNA scondary structure
and produce high-quality muiltiple alignments. The
approach may be applied to any family of small RNA
sequences.

INTRODUCTION

A major role of computational methods in molecular biology is
to identify similarities between sequences. Similarity between
sequences generally implies functional and/or evolutionary
homology and therefore provides important biological
information. The analysis of large-scale genome sequence data
is particularly dependent upon similarity searching methods
(1—4). Similarity searching methods are fairly well developed
for protein sequence analysis. Fast algorithms such as BLAST
(5) and FASTA (6) are in widespread use for detecting
homologues of new protein sequences. Even more sensitive
methods such as profiles (7, 8) or hidden Markov models (9,
10) are available which use consensus information from multiple
sequence alignments to detect new members of protein sequence
families.

There are also many biologically important macromolecules
that are composed of RNA. These include transfer RNA(11, 12),
ribosomal RNA (13), group I and group II catalytic introns (14,
15), and spliceosomal small nuclear RNAs (16), to name just
a few. Target sites for genetic regulation are often specific
structures in mRNA molecules, such as the TAR or RRE binding
sites in the human immunodeficiency virus genome (17) or the
iron response elements in ferritin and transferrin receptor mRNA
(18). In vitro selection methods select families of small RNA

molecules fit for a particular function, such as protein binding
(19, 20) or even catalysis (21), out of randomized repertoires.
One wants to be able to detect similar RNAs and RNA motifs
in sequence data. However, the primary sequence based
techniques that generally work quite well for protein sequence
analysis are not well suited for studying RNA.

Most functional RNAs appear to be selected more for
maintenance of a particular base-paired structure than
conservation of primary sequence. RNA secondary structure
induces strong pairwise correlations in RNA sequence, usually
manifested as Watson—Crick complementarity. RNA sequence
analysis therefore must work with this pattern of correlations in
addition to primary sequence conservation, and methods for
searching databases for new members of RNA families have
consequently lagged behind those for analysis of protein. Transfer
RNA or group I introns can be recognized by specialized, custom-
built programs (22 —25). Programs that use manually constructed
and relatively inflexible patterns of conserved residues and base-
pairs, analogous to PROSITE patterns of protein motif sequences
(26), have been described for RNA (27, 28). More general
methods that capture both primary and secondary structure
consensus information while still flexibly scoring insertions,
deletions, and mismatches are desirable (29, 30).

Database searching for RNAs is not the only problem affected
by the lack of mathematical models that deal with secondary
structure. Multiple RNA sequence alignment, a prerequisite for
the inference of phylogenetic trees and for RNA structure
prediction, is a markedly circular problem: accurate multiple
alignment relies on an accurate secondary structure prediction,
and vice versa. RNA sequences that share a common function
and structure can appear to be unrelated and unalignable until
a common secondary structure is recognized. The most reliable
means of consensus RNA secondary structure prediction and
multiple alignment is the iterative, laborious refinement process
of comparative sequence analysis (31, 32)—a process of
computer-aided recognition of strongly correlated positions in
a multiple alignment followed by manual refinement of the
alignment. The rapid discovery of new RNA sequence families
by in vitro selection methods, in particular, is creating a need
for automatic RNA structure prediction and multiple alignment
methods (19—-21, 33).

Here we introduce a probabilistic model, which we call a
‘covariance model’ (CM), which cleanly describes both the
secondary structure and the primary sequence consensus of an

*To whom correspondence should be addressed



2080 Nucleic Acids Research, 1994, Vol. 22, No. 11

RNA. Using covariance models, we introduce new and general
approaches to several RNA analysis problems: consensus
secondary structure prediction, multiple sequence alignment, and
database similarity searching. We describe a dynamic
programming algorithm for efficiently finding the globally
optimal alignments of RNA sequences to a model, and we show
how to use this algorithm for database searching. Covariance
models are constructed automatically from existing RNA
sequence alignments or even from initially unaligned example
sequences, using an iterative training procedure that is essentially
an automatic implementation of comparative sequence analysis
and an algorithm that we believe is the first optimal algorithm
for RNA secondary structure prediction based on pairwise
covariations in multiple alignments.

We test these algorithms using data taken from a trusted
alignment of 1415 tRNA sequences (12), and on genomic
sequence data from the C.elegans genome sequencing project
(4). We find that an automatically constructed tRNA CM is
significantly more sensitive for database searching than even the
best custom-built tRNA searching program. Our methods produce
tRNA alignments of higher accuracy than other automatic
methods and they invariably predict the correct consensus
cloverleaf tRNA secondary structure when given unaligned
example tRNA sequences.

METHODS
Description of a covariance model

An RNA covariance model is based on an ordered tree. A tree
can capture all the pairwise interactions of an RNA secondary
structure (34). However, a tree cannot capture other tertiary
structural interactions, such as non-pairwise interactions (base
triples) or non-nested pairs (pseudoknots) (35); the consequences
of these approximations will be discussed later. Figure 1 shows
an ordered tree representation of a single RNA sequence. Many
different trees can represent any given sequence, but the ‘best’
trees, for our purposes, will be those in which pairwise nodes
of the tree are assigned to base pairs in the RNA structure and
singlet nodes of the tree are assigned to single-stranded bases:
Both the structure and the primary sequence are described by
such a tree. The primary sequence can be regenerated (emitted)
by a traversal of the tree from root to leaves and left to right.

This tree is an inflexible description of a single RNA. We need
to allow for insertions, deletions, and mismatches to describe
a family of related RNAs; therefore we imagine that each node
describes columns in a multiple alignment instead of bases in
an individual sequence. Specific base assignments are replaced
with symbol emission probabilities assigned to the 16 possible
pairwise nucleotide combinations or 4 singlet nucleotides. To
accommodate minor variations in structure such as insertions and
deletions, each node is replaced with a number of different states
(Figure 2) with particular properties. ‘Match’ states (MATP,
MATL, MATR) account for the conserved consensus columns
of an alignment. ‘Insert’ states (INSL, INSR) account for
insertions relative to the consensus. ‘Delete’ states (DEL) emit
nothing and allow for the possibility of deletions relative to the
consensus. MATL and MATR singlet states are included in
pairwise nodes to allow for the possibility that either side of a
consensus base pair may be deleted to leave a bulge. States are
connected to each other by state transition probabilities, which
are scores for transiting to one of several possible new states.
For example, note that after entering an insert state, there is a
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Figure 1. (A) An example RNA structure. (B) An ordered binary tree description
of that RNA structure. The tree includes dummy begin, end, and branching
(bifurcation) nodes in addition to pairwise and singlet nodes that account for
sequence.

state transition probability for staying in it; this roughly
corresponds to a gap-open and gap-extend penalty. Special non-
emitting states describe the tree structure itself, such as bifurcation
states with forced transitions into two new states and dummy
begin and end states. The state transition scores will favor a
probable main line through the model that represents the
consensus structure.

We call the resulting probabilistic model a covariance model.
The final model consists of a number of states M, symbol
emission probabilities P, and state transition probabilities 7. A
CM can be thought of as a probabilistic machine that generates
representative sequences of an RNA family. It describes an RNA
multiple sequence alignment in terms of both primary sequence
consensus and pairwise covariations induced by consensus
secondary structure. CMs are a generalization of hidden Markov
models (HMMs), probabilistically rigorous models which have
been widely applied in speech recognition (36) and, more
recently, applied to profile-like methods of protein sequence
analysis (9, 10). An HMM is a special case of a CM with no
bifurcations and with no pairwise states for describing
covariations. The algorithms for applying CMs to sequence
analysis correspond to those for HMMs (10, 36), extended to
tree structures.

Alignment algorithm
The basic operation when using CMs is the alignment of one
RNA sequence to a CM and the calculation of a probability score.



Right singlet node

Figure 2. The seven distinct types of nodes from Figure 1 are broken up into
states as shown. There are seven different kinds of states in all (bifurcation BIF,
begin BEG, insert-left INSL, insert-right INSR, match-pairwise MATP, match-
left MATL, match-right MATR, and delete DEL). State transition probabilities
are indicated by arrows. States which have singlet or pairwise symbol emission
probabilities are indicated vy ‘ACGU”’ beside the state.

Multiple sequence alignments are produced by aligning individual
sequences to a single model. A model is trained by optimizing
the parameters and structure of the model to assign high alignment
scores to a set of example training sequences. Secondary
structures are predicted from what base pairs are assigned to
pairwise states in an alignment. Database searching involves
looking for high-scoring alignments to subsequences of arbitrarily
long sequences.

The optimal alignment of an RNA sequence to a CM and its
probability score are calculated using a three-dimensional
dynamic programming algorithm. The key idea is to start from
alignments of the smallest subtrees of the model to the smallest
internal subsequences (single symbols and empty strings) and to
use these smaller alignments to recursively calculate the
probability for alignments of larger subtrees to larger
subsequences until a globally optimum alignment has been
calculated.

Specifically, a three-dimensional matrix is calculated,
containing scores S;;, which are the log likelihoods of
alignments of subsequences i...j (1 < i < j < N bases) to
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subtrees beginning in a state y (1 < y < M states). We think
of i and j as rows and columns, respectively, and y as levels.
The states of the tree are numbered from the root, such that
downstream (more terminal) states y,., always have higher
indices than their parent state y; i.e. in preorder traversal (37).
(Vnexe| ¥) is a transition probability from state y to one possible
downstream state ... P(x;, ;| y) is the probability that a state
y emits the symbols x; to the left and x; to the right.

S;;y is found by calculating scores for each of up to six
possible matrix cells that matrix cell i,j,y can connect to, and
keeping the maximum score. Each possible S;;, is the sum of
three numbers: (1) the symbol emission log probability for i
and/or j (or zero) depending on what kind of state y is; (2) the
state transition log probability for moving from y to y,,.; and
(3) the score S; . for y,., aligned to a subsequence i',’
which is already known from previous steps in the recursion.
Both i’ and j’ depend on what type of state y is; because y may
emit x;, x;, both, or neither, depending on whether it is a singlet,
pairwise, or non-emitting state, i’ may be i or i+1, and j' may
be either j or j — 1.

The calculation begins by allocating and initializing a partial
cube of j = [0...N] rows, i = [0..j+1] columns, andy = [1...M]
levels. A set of ‘off-diagonal’ scores ;. , handles boundary
conditions which represent the score of the subtree from state
y aligned to no sequence; the score of end states aligned to these
is initialized to zero. All other scores are initialized to — co. Then,
starting from the off-diagonal i = j + 1,j and working towards
the corner i = 0, j = N, we loop overy = M downtoy =
1 for each subsequence:

Sijuly = MATP)

Sijyly = MATL,INSL)
Sisy(y = MATR,INSR)
Sijyly = DEL)

Sijs(y = BIFURC)

MaX[Si41,5-1yness + 108 T (Ynest | ) +10g P(2i, 25 | 9))
MX[Sit1,jignes: + 108 T (Unest | ) + log P(zi | y))
ﬂﬁ"‘lsi.i-l.vum + 108 T (Yneet | y) +.10g P(z; | y))
MaX(Sijumere + 108 T (Yneet | 9)]

11 02X Simidunag, + Smidtiarion]

At the end, the score of the global alignment is in S y;. The
alignment itself is reconstructed by tracing back through the
matrix beginning at S  ;, as is usual for dynamic programming
methods, following the maximum-scoring path at each state. The
algorithm requires O(N2M) memory and O(N*M) time. It takes
roughly four megabytes of memory and one or two seconds to
align a tRNA sequence to a tRNA CM on a Silicon Graphics
R4000 Indigo.

The score is reported as a log-odds score, by subtracting from
the log likelihood of the alignment the log likelihood that the
sequence was generated as random sequence of equiprobable base
composition. Scores are reported in log base two, i.e. in bits.
This can be done simply by precalculating log-odds scores in
place of log likelihood scores for each symbol emission
probability, prior to alignment. Log odds scoring corrects for
the strong length dependence of log likelihood scores. This
correction makes database searching possible and greatly
simplifies interpretation of scores. Scores above zero are more
likely matches to the model than to random sequence, and the
more positive the better.

The alignment algorithm is similar to the Nussinov/Zuker
algorithms for folding individual RNAs (38, 39) and to the
Needleman/Wunsch algorithm for aligning two primary
sequences. It is also very similar to the Inside —Outside algorithm
proposed for alignment of stochastic context-free grammars to
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speech data (40, 41), except that we make the Viterbi assumption
that the probability of the model emitting the sequence is
approximately equal to the probability of the single best alignment
of model to sequence, rather than the sum of the probabilities
of all possible alignments (36). The Viterbi assumption
conveniently produces a single optimal alignment rather than a
probability distribution over all possible alignments.

Model training

Given a set of example sequences, we want to find the CM which
has the maximum likelihood of generating those sequences. This
is model ‘training’ (Figure 3). It is a global optimization problem
with no practical rigorous solution. In fact we have two problems:
deciding on a structure for the model (how many nodes and states
and how they branch), and finding optimal values for the state
transition probabilities and symbol emission probabilities given
that structure.The second problem is soluble by methods such
as expectation maximization (EM), which find good local optima
for parameter values. That leaves us the problem of consensus
secondary structure determination.

Heuristic methods have been proposed for RNA consensus
secondary structure prediction based on correlations observed in
multiple alignments (42, 43). Instead, we present an optimal and
efficient dynamic programming algorithm for consensus RNA
secondary structure prediction from RNA sequence alignments,
and we use this algorithm for model construction. The algorithm
uses values of mutual information content for all pairs of columns
in a multiple alignment (31, 42). In a multiple sequence
alignment, the mutual information of column i and column j,
where x; range over possible symbols A, C, G, and U, f,, is the

I unaligned sequences

random
m

alignment

multiple alignment (EM) covariance model
reestimation

model construction
(structure prediction)

independent frequency of a symbol in column i, and £ is the
joint frequency of a symbol pair in columns i and j, is:

M;; = Z ft.:, log, ftit’

TiTy

M;; varies from 0 bits (no correlation) to 2 bits of mutual
information (perfectly correlated base pair with no primary
sequence conservation). The M;; values of the master alignment
of 1415 tRNA sequences are shown in Figure 4. The mutual
information represents an expected gain in score from assigning
columns i and j to a pairwise state instead of to singlet states.
In general, the consensus secondary structure will be included
in the tree which captures as much correlation information as
possible. This tree is calculated by applying a dynamic
programming calculation to the pairwise mutual information
scores, starting from the diagonal i = j and working towards
i = 1,j = N and using the recursion:

Sij =maz{Siy1j, Sij-1, Sisrj-1 + Mij, MaTicmid<i[Simid + Smids1,;]

This is the Nussinov/Zuker dynamic programming RNA
folding algorithm (38, 44) except that the score being optimized
is a function of mutual information terms rather than of number
of base-pairs or of thermodynamic stacking energies. The time
and memory required are negligible relative to the alignment
algorithm. S;  will contain the maximal sum of the covariations
M;; that can be captured by a tree, and the traceback of the
score matrix produces the structure of that optimal tree (Figure
4). An approximate covariance model structure is derived from
this tree. Columns of the alignment are assigned to match nodes
or insert states of neighboring nodes according to how many
symbols occupy the column, using an arbitrary threshold of 50%.
By definition, the new model is aligned to all of the training
sequences in the multiple alignment, so symbol emission and state
transition parameters P and T are calculated using the re-
estimation procedure described below.

Given an initial model, we find locally optimal values for the
state transition probabilities 7 and symbol emission probabilities
P by iterative re-estimation, using the Viterbi approximation to
Baum—Welch expectation maximization (EM) (10, 36). Each
example sequence is aligned to the current model using the
alignment algorithm. Re-estimates for parameters P and T are
made from these alignments based on the observed counts of state
transitions and symbol emissions, n(y,.| ¥) and n(x| y), using
a procedure like that described in (10):

n(z |y) + R(z |y)

P(z =
C19) = 1+ Semacow RET9)
— PUnest | Y) + RiYnest | y)
. .. . T (Ynest l y) = R
Figure 3. The covariance model training algorithm. : 1Y) + Tynese RYnest | ¥)
Table 1. Statistics of the training and test sets of 100 tRNA sequences each
Dataset Avg. Min Max ClustalV 1° info 2° info
id id id accuracy (bits) (bits)

TEST 0.402 0.144 1.00 64% 43.7 30.0-32.3
SIM100 0.396 0.131 0.986 54% 39.7 30.5-32.7
SIM65 0.362 0.111 0.685 37% 31.8 28.6—30.7

The average identity in an alignment is the average pairwise identity of all aligned symbol pairs, with gap/symbol alignments counted as mismatches. Primary sequence
information content is calculated according to (48). Calculating pairwise mutual information content is an NP-complete problem of finding an optimum partition
of columns into pairs. A lower bound is calculated by using the model construction procedure to find an optimal partition subject to a non-pseudoknotting restriction.
An upper bound is calculated as sum of the single best pairwise covariation for each position, divided by two; this includes all pairwise tertiary interactions but
overcounts because it does not guarantee a disjoint set of pairs. For the meaning of multiple alignment accuracy of ClustalV, see the text.



This corresponds to a Bayesian mean posterior probability
estimate given a Dirichlet prior with parameters R. If the
parameters R are equal to one, the equations correspond just to
a standard small sample statistics correction of the observed
frequencies, Laplace’s law of succession (45); we use this for
match state emissions. Following (10), we use high R values to
fix insert state emissions to be equiprobable regardless of
observed counts, and we also bias state transition parameters R
to favor transitions into MATP > MATL,MATR > INSL,
INSR, DEL. This is a ‘subjective’ or expert Bayesian prior.
Alternatively, we could derive prior probability parameters R
from RNA alignment data. The alignment and re-estimation
process is repeated until values for the parameters P and T
converge. The process is guaranteed to converge to a local
optimum (10, 36).

Therefore, a full training procedure is as follows (Figure 3).
An initial model is created from a (possibly random) alignment
of the example sequences using the model construction algorithm.
The model’s symbol emission and state transition probabilities
P and T are iteratively re-estimated by an EM algorithm. When
the parameters converge, a new model is built from the current
multiple sequence alignment with the model construction
algorithm. This cycle is repeated until neither the model structure
nor its parameters are changing significantly.

This training procedure is analogous to the intuitive manual
process of comparative sequence analysis. A starting alignment
is refined iteratively as progressively more correlations and
conserved positions are perceived. Training obviously works best
if the starting alignment is good. Importantly, though, we have
found that it also works when started from random alignments
of example sequences.

Searching

The searching algorithm for finding high-scoring subsequences
in an arbitrarily long sequence is nearly identical to the alignment
algorithm. The search scoring matrix is indexed by distance from
diagonal d, j, and y instead of i, j, y. Scanning across a long
sequence is achieved by adding a new row j for the next sequence
position, calculating scores starting from the diagonal d = 0,
and examining the final scores aty = 1 for each d. These scores
are the scores of alignments to all the possible subsequences that
end in x;. The starting point of a match is known (i = j — d)
without having to do a traceback of the scoring matrix. By
restricting the subsequences scored to a certain maximum length
w and using a matrix index j° = j mod w instead of j, the scoring
calculation maintains constant memory size regardless of the
length of the sequence being searched.

tRNA data sets

The 1993 compilation of aligned tRNA sequences (12) was
obtained from the ftp.embl-heidelberg.de anonymous ftp server.
The 87 noncanonical ‘group III’ sequences were removed, as
well as the 509 RNA sequences (which are often redundant with
the DNA sequences in the database), leaving a database of 1415
aligned tRNA DNA sequences. Of these, 62 are archaebacterial,
242 are eukaryotic nuclear, 259 are from chloroplasts, 249 are
eubacterial, 579 are mitochondrial, and 24 are viral. This
alignment was assumed to be correct, and is referred to
throughout as the ‘trusted’ alignment. 100 sequences were
selected at random from this database to form an independent
TEST100 test sequence set. A training set of 100 sequences,
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SIM100, was selected randomly from the 1315 remaining
sequences. An additional training set of 100 sequences, SIM65,
was constructed by filtering out similar sequences; the 1315
sequences were clustered by pairwise aligned primary sequence
identity and then all but one homologous sequence was removed
at random from clusters over a 65% average similarity threshold.

Implementation

The algorithms were implemented in ANSI C on a Silicon
Graphics R4000 Indigo. The programs are known to be portable
across several UNIX architectures, including Silicon Graphics,
Sun, DEC Alpha, MIPS M2000, and Alliant FX/2800 machines.
The software, parameter sets, and tRNA alignments are available
via anonymous ftp from cele.mrc-lmb.cam.ac.uk (131.111.84.1)
or by request from S.R.E.

RESULTS
Training and test tRNA data sets

Transfer RNA (tRNA) is ideal for testing these algorithms. Well
over a thousand tRNA sequences are known. Although their
primary sequences vary, almost all tRNAs share a common
structure. Multiple tRNA sequence alignments are the only
available RNA alignments that utilize X-ray crystal structure
information. A compilation of aligned tRNA sequences is freely
available (12). We obtained a master trusted alignment of 1415
tRNA sequences from this database (see Methods). 100 sequences
were held out as independent test data.

We picked two training sets of 100 sequences each. One set,
SIM100, was selected randomly from the 1315 training
sequences. The second set, SIM65, was created as described in
Methods and contains 100 particularly dissimilar tRNA
sequences. The most related pair of sequences in SIM65 is 69 %
identical when correctly aligned. The average pairwise identity
in all the data sets is between 35% and 40% (Table 1). The
accuracy of standard pairwise sequence alignment (46) begins
to sharply drop off for pairs of tRNA sequences less than about
65% identical (data not shown). ClustalV, a popular and reliable
multiple sequence alignment program (47), produces poor
alignments for all these data sets which range from 37% to 63%
identical to the trusted alignments. This is almost as bad as one
gets from uninformative alignments; removing all gaps from the
sequences gives ‘alignments’ which are about 30% identical to
the correct alignment (Table 1). (We measure alignment identity
as the fraction of aligned symbol pairs in the trusted alignment
that are also aligned in the other alignment.)

Given a multiple sequence alignment, an information content
(48) can be calculated for the primary sequence consensus, and
estimates of the pairwise second-order information content can
be obtained. These information measures indicate how much extra
information may be gained by models which capture pairwise
second-order information. There is almost as much information
in the secondary structure of tRNA as in the primary sequence
consensus (Table 1). A secondary structure representation of
tRNA such as a CM should use twice as much information about
tRNA sequences as a primary sequence representation such as
an HMM or a profile.

Table 1 also shows an estimate of how much additional pairwise
information is available from tertiary contacts that a CM does
not capture. We calculated an upper bound on the total pairwise
correlation information that includes all pairwise contacts, not
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just those consistent with classical nested secondary structure.
This number is less than 10% greater than the figure for
secondary structure (Table 1). A CM captures over 90% of all
pairwise information in tRNA sequences.

Consensus structure prediction

Because a secondary structure is implicit in the structure of a
covariance model, covariance model training can be used to
predict a consensus RNA secondary structure. The model training
algorithm derives a consensus secondary structure prediction
directly from an alignment, or from initially unaligned sequences
(Figure 3).

The easier problem is to build a model from an existing
alignment. Since trusted structural alignments already exist for
many important biological RNAs, this ability to go straight from
an alignment to a model for searching databases is useful. CMs
were trained starting from the trusted alignments of each of the
training sets. These models (the A models) converged rapidly
and had average scores of from 46.7 bits to 58.7 bits (Table 2).
Hidden Markov models, which use primary sequence information
alone, reach average scores of from 22 to 30 bits trained on the
same alignments (data not shown). As expected, a covariance
model captures about twice as much information as an HMM.
The scores are significant fractions of the predicted upper bounds

Table 2. Training and multiple alignment results from models trained from the trusted alignments (A models) and models trained

from no prior knowledge of tRNA (U models)

Model Training set Iterations Score Alignment
(bits) accuracy
Al415 all sequences (aligned) 3 58.7 95%
A100 SIM100 (aligned) 3 57.3 94%
A65 SIM65 (aligned) 3 46.7 93%
U100 SIM100 (degapped) 23 56.7 90%
U65 SIM65 (degapped) 29 472 91%
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Figure 4. The half-diagonal matrix of M; ; mutual information values for the trusted alignment of all 1415 tRNA sequences. X and Y coordinates are numbered
according to the canonical scheme for LRN"A positions. Values of 0.0— 1.0 bits are squares colored in linear grey scale and values of greater than 1.0 bits are black
squares. The path of the traceback from the model construction algorithm is superposed on the matrix. Thick lines run through assigned nodes and thin lines connect
the bifurcation points. The arrow indicates an example of a strong covariance from the tertiary contact G;5—C,g in the yeast tRNA-Phe structure which the non-
pseudoknotting restriction prevents the model from including. The structure, canonical numbering scheme, and tertiary contacts (dashed lines) of yeast tRNA-Phe

are also shown.



(60—70 bits; see Table 1); the difference is due to the costs
associated with the model’s state transition probabilities (entropy
due to permissible variations in structure).

The harder problem is to create a model from unaligned and
unfolded sequences, where the correct consensus structure and
alignment are initially unknown. Models were trained starting
from unaligned training sets and no information about the
structure of tRNA. After 13—29 total rounds of iteration and
2—5 model structure changes, these models (the U models)
converged at final scores of 47.2—56.7 bits (Table 2). These
values are comparable to the results for models started from the
trusted alignments.

The alignment of the U models to the sequence of yeast tRNA-
Phe was examined to see if the models were correctly assigning
the cloverleaf secondary structure. The pairwise assignments of
the model should include the pairwise interactions in the
secondary and tertiary structure. Indeed, the resulting secondary
structure prediction of tRNA-Phe by both models was entirely
correct. Two tertiary contacts are consistent with the non-
pseudoknotting constraint [Gys—Ayy and Usy—Asg (49)] and
these were also predicted by both U models.

Multiple sequence alignment

The A models and the U models were used to produce multiple
sequence alignments of the 100 independent test sequences, and
these alignments were compared to the trusted alignment (12).
The A models produced alignments ranging from 93% to 95%
correct. The U models produced alignments ranging from 90%
to 92% correct (Table 2). For example, trusted and predicted
alignments for a small set of five tRNA sequences are shown
in Figure 5.

A pseudo-random alignment produced by just removing all the
gaps from the test set is 30% correct. A rough upper bound was
also estimated; since only a few tRNA crystal structures are
known, the ‘correct’ alignment is not unambiguous and it would

Trusted:

DF6280 UGAAG

DF6280G UGAAGAAAUACUUCGGUCAAGUU
DD6280 uGUCG

DX1661 UCAUA

DS6280 UAGAA

U100:

DF6280 \cu GA  AG
DF6280G jCUgaagaaauaculUCgguCAagu
DD6280 X uu GU €6
DX1661 . ¥ }cu CA UA
DS6280 YUGBLEHAG UGGUUNABBEGRANGAUY AG
ClustalV:
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DF6280G
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DX1661
DsS6280
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be fairly suspicious if a method did achieve 100% identity to
the trusted alignment. A careful independent human alignment
(S.R.E.) of a randomly chosen set of ten of the test sequences
scored 97% identity to their trusted alignment. Despite their
ignorance of most tertiary structure information, CMs can use
secondary structure information to produce alignments very
nearly as good as human alignments.

Database searching

One major goal of CMs is to provide a general-purpose RNA
searching tool, obviating the need for custom-built programs for
every different RNA family. We therefore tested how well a CM
performs relative to one of the carefully crafted tRNA detection
programs that are available (22, 24, 25). The best is probably
Fichant and Burks’ TRNASCAN (22). In a search of GenBank
release 66, TRNASCAN detected 725 of 744 known non-
organellar tRNAs (97.5% true positive rate), 26 false positives
in 69.2 Mb searched (0.37 false positives/Mb), and 16 previously
unnoticed probable tRNAs (22).

For searching, we used the best tRNA model (A1415), trained
from the trusted alignment of all 1415 tRNA sequences. A1415
was compared to the GenBank structural RNA database (Release
72, 1.9 Mb) using the database scanning version of the alignment
algorithm and both strands of 2.2 Mb of C.elegans genomic
sequence (4). 15 possible tRNAs are suggested by TRNASC-
AN in the C.elegans genomic sequence. By human inspection,
one of these predictions appears to be a false positive; 14 of the
15 have been annotated as tRNA genes (Erik Sonnhammer,
personal communication).

These data are summarized in Figure 6. Fichant and Burks
trained and tested on only a subset of more well-conserved
‘cytoplasmic’ tRNAs, from eukaryotic cytoplasm, archaebacteria,
or eubacteria, and excluded less conserved ‘other’ tRNAs such
as mitochondrial or selenocysteine tRNAs. It was difficult for
us to perform this separation cleanly using the annotations of the

AA st N ; NG

Figure 5. Multiple sequence alignment of five tRNA sequences whose three-dimensional structures are known from X-ray crystallography. Top, the trusted structural
alignment (12); middle, the alignment produced by model U100; bottom, the alignment produced by a primary sequence alignment algorithm, ClustalV (47). The
nucleotides in lower case in the U100 alignment are those assigned to insert states. The nucleotides in the canonical cloverleaf secondary structure are in grey. DF6280,
yeast tRNA-Phe (PDBITRA); ‘DF6280G’, genomic sequence of a yeast tRNA-Phe (GenBank YSCTGFT15); DD6280, yeast tRNA-Asp (PDB2TRA); DX1661,
E.coli initiator tRNA-fMet (PDBOFMT); DS6280, yeast tRNA-Ser (PDB5TRA). The genomic sequence of tRNA-Phe is included as an example of the ability of

the U100 CM to accomodate deviations from the structures in its training set.
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Figure 6. Number of hits versus score in bits, using the A1415 model to search
a total of 6.3 Mb of sequence from the Genbank structural tRNA database and
both strands of the current genomic C.elegans sequence. In white are the
background of non-tRNA hits. Hits to 547 non-selenocysteine ‘cytoplasmic’ tRNAs
are in black. ‘Other’ tRNA hits, in grey, are the scores of 868 mitochondrial,
chloroplast, viral, and selenocysteine tRNAs. Arrows indicate the gap between
the highest non-tRNA hit (with two tRNA-related exceptions; see text) and the
lowest scoring cytoplasmic tRNA.

522 tRNA sequences in the GenBank structural RNA database.
Instead, we counted the scores of the 1415 sequences of the well-
annotated tRNA database as the true positives and split them into
547 ‘cytoplasmic’ tRNAs and 868 ‘other’ tRNAs to facilitate
comparison to TRNASCAN. These are scores to the training set
itself; only the C.elegans genomic tRNAs constitute an
independent test set in this experiment. The non-tRNAs,
providing an estimate of the false positive rate, are from non-
tRNA scores from the GenBank structural RNA database and
from the C.elegans genomic sequence (6.3 Mb total).

Any score cutoff between 11.7 and 25.9 cleanly separates all
the non-tRNAs from the 547 cytoplasmic RNAs, giving a
sensitivity of >99.98% and a false positive rate of <0.2/Mb,
compared to TRNASCAN’s 97.5% sensitivity and 0.37/Mb false
positive rate. There are two ‘non-tRNA’ hits in the GenBank
database at scores of 14.4 and 32.9 which are due to repetitive
elements known as R.dre.1 or identifier (ID). These are members
of a family of SINEs (short interspersed nuclear elements) in
rodents which are thought to have originated from tRNA (50).
They are not detected by TRNASCAN. We did not count these
as false positives.

As a further test of searching a genome for relatively non-
canonical tRNA genes, we also ran both TRNASCAN and the
covariance model A1415 on the complete mitochondrial genome

of Podospora anserina (PANMTPACGA), which is annotated
as having 27 tRNA genes. A1415 detects 27/27 (100%) of them
with no false positives for a cutoff between 15 and 23 bits; the
highest non-tRNA hit, at 15 bits, is highly AT-rich and within
a coding sequence, and is thus probably a real negative.
TRNASCAN detects 18/27 (67 %) of them with no false positives.
21 of the 27 Podospora tRNA sequences were not in the A1415
training set.

There are tRNAs that are difficult to recognize. 33/868 (5%)
of the ‘other’ tRNAs score below 12 bits. 31 of these are
mitochondrial; the other two are phage TS5 tRNA-Ser and a
Drosophila melanogaster selenocysteine tRNA. In the GenBank
structural RNA database, 26/522 (5%) of annotated tRNAs were
missed. 22 of the 26 missed GenBank tRNAs are Ascaris suum
mitochondrial tRNAs which completely lack the dihydrouridine
stem-loop (51). The remaining four were mitochondrial tRNA-
Ser from human, hamster, and cow, and a yeast suppressor tRNA
(YSCLSC).

In C.elegans genomic sequence, all 14 putative tRNA genes
were detected. 12 intronless tRNA genes give scores of
63.5—77.0, and two intron-containing tRNA genes give scores
of 31.6 and 31.7. The 15th tRNA proposed by TRNASCAN and
subsequently rejected after human inspection scored —42.5 and
was also rejected by the A1415 CM. The detection of the intron-
containing tRNA genes demonstrates the flexibility of the model,
which had only seen intronless sequences during training.

DISCUSSION

We describe a ‘covariance model’, a general probabilistic model
of RNA secondary structure and sequence consensus. A CM
allows insertions, deletions, and mismatches relative to the
consensus, assigning them scores based on probabilities observed
in example RNAs. Base pairs are scored in a manner that allows
any combination of primary sequence conservation and pairwise
correlation with another sequence position. Any type of pairwise
correlation, canonical Watson—Crick or other noncanonical
interactions, can be scored. Previously, it has only been possible
to make probabilistic models of primary sequence consensus (7,
8, 10). RNA structures have been modeled either with custom-
built programs (22 —25) or with fairly inflexible non-probabilistic
descriptions (27, 28). Full probabilistic descriptions of a molecule
have very significant advantages in database searching.
Probabilistic models incorporate information from even weakly
conserved features and have superior sensitivity and
discrimination compared to more deterministic pattern-searching
methods. We find that a tRNA CM is superior even to a custom-
built tRNA searching program that incorporates partial
probabilistic information (22). Also, a probabilistic model can
be flexible enough to recognize unexpectedly related sequences.
Good examples of this were given when a tRNA model
recognized two R.dre.1 SINE sequences in GenBank’s structural
RNA database which are members of a repetitive element family
thought to be derived from tRNA (50), and when a tRNA model
recognized intron-containing tRNAs in C.elegans genome
sequence although it had been trained only on intronless tRNAs.
CMs give us the ability to search for homologues of RNAs that
conserve only small amounts of primary sequence. We are
interested in constructing models of other RNA families,
especially of the various catalytic RNAs (23, 52—54) in order
to search for unnoticed examples of these molecules in the
sequence databases.



We build CMs directly from RNA sequence alignments, when
such alignments are available. No additional structural
information is necessary to produce accurate secondary structure
predictions when the alignment is given, because strong
covariances make the correct structure obvious. The model
construction procedure uses a fast and efficient dynamic
programming algorithm to find a globally optimal model
structure. This structure consists of the consensus secondary
structure plus a few additional tertiary interactions that happen
to be compatible with the non-pseudoknotting restriction. Non-
optimal, heuristic methods have been proposed before for RNA
structure prediction from alignments (42, 43). We believe ours
is the first globally optimal consensus secondary structure
prediction algorithm that has been proposed. We are currently
using the model construction algorithm on its own to rapidly
analyze alignments of families of DNA repeat sequences in the
C.elegans genome to see if any secondary structure is apparent,
since some classes of mammalian SINE elements are apparently
derived from structural RNA transcripts.

We also find that models can be trained from initially unaligned
sequences, using no prior information about the consensus
structure of the family, which means that CMs can be used for
consensus secondary structure prediction. This represents a
fundamentally new computational technique for RNA consensus
structure prediction. Previous efforts have largely concentrated
on calculating thermodynamically optimal and suboptimal
individual structures using the Zuker/Nussinov RNA folding
algorithms (38, 39), then searching for common structures
amongst the alternative foldings for each sequence (34, 55).
Instead, CMs are essentially an automatic implementation of the
comparative sequence analysis methods that have been
instrumental in producing the accepted consensus secondary
structures of numerous RNA families (16, 31, 53, 56—61). CMs
could be used to seek a consensus structure of RNA sequence
families for which such information is not yet known, such as
some of the nucleolar snRNA families (62).

We also find that CM training can produce multiple sequence
alignments of quite high accuracy. In general, RNA alignments
have been produced by hand because their accuracy relies so
heavily on pairwise correlations. The only described simultaneous
folding and multiple alignment algorithm, that of Sankoff (63),
which finds a globally optimum multiple alignment that optimizes
a linear combination of thermodynamic folding energy and
primary sequence alignment score, has not been practical to
implement. We briefly considered the possibility that CM-
generated alignments are better than the trusted human ones. We
checked the alignments of yeast phenylalanine and yeast aspartate
tRNAs against a structural alignment produced by superposition
of the two crystal structures (data not shown), and verified that
the trusted alignment was correct and that the CM alignment
tended to be inaccurate in regions where correct alignment
required tertiary structural information (see Figure 5).

Because CMs ignore additional covariation-inducing tertiary
structural interactions such as pseudoknots, our methods can only
be an aid, not a complete solution, to producing the highly
accurate multiple sequence alignments necessary for low
resolution three-dimensional RNA structure prediction problems
(15). However, the contribution of tertiary interactions is not
crucial for database searching purposes. We show (Table 1) that
tertiary structure contributes at most two or three bits of pairwise
correlation information to tRNAs, compared to 30—40 bits in
primary sequence consensus and 30 bits of secondary structure
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pairwise correlation information. We expect these rough
proportions to be about the same for most RNAs; pseudoknots
may be functionally important in RNA structures but they usually
account for relatively few base pairs. We are exploring methods
to deal with pseudoknots but these will have to be either heuristic
additions on top of our algorithms or quite different from the
CM framework we describe, because the exclusion of
pseudoknotted interactions is enforced both by the structure of
a CM and by the dynamic programming algorithms we use.

Our approach was conceived as a synthesis of the application
of hidden Markov modeling to protein sequences by Krogh et
al. (10), and the Zuker/Nussinov algorithms for finding
thermodynamically optimal foldings of individual RNAs (38, 39).
Later, we discovered that the step from HMM:s to CMs was well
known in formal language theory (29). HMMs are stochastic
regular grammars, and our CMs could be described as stochastic
context-free grammars (SCFGs), one step more general in the
Chomsky hierarchy of formal grammars (64, 65). Our alignment
and training algorithms are closely akin to the algorithms for using
SCFGs to model speech (40, 41). Searls has already proposed
non-stochastic context-free grammars as an RNA modeling tool
(29). While our work was in progress, we also became aware
of work by Sakakibara et al. (30) which introduces similar RNA
methods that are more closely faithful to the stochastic context-
free grammar formalism. They describe an elegant and fast
training method that takes advantage of base-pairing information
when it is already known, and they build RNA SCFGs manually
from prior knowledge of an RNA secondary structure. In
contrast, our model training algorithms build CM structures fully
automatically and let us work quickly and easily from either an
existing sequence alignment or even from unaligned and unfolded
sequences.

The most serious drawback of these methods is that the size
of RNAs that we can deal with is sharply limited by the
computational demands of the alignment algorithm. We currently
cannot analyze sequences much longer than 150-—200
nucleotides. Database search speed is about 10—20 bases/s for
tRNA models, which is painfully slow for full-scale searching
of entire sequence databases. For now, the programs are sufficient
to build models of small snRNA, tRNA, and repeat families and
keep pace with the analysis of the C.elegans genome sequencing
project. We are exploring workarounds for studying larger RNA
molecules. Another drawback is that a large number of sequences
are required to build a good model. Although consensus structure
prediction and multiple alignment can be reasonably accurate with
as few as ten or twenty sequences (data not shown), a satisfyingly
discriminative model for searching databases can require a
hundred or more sequences. We hope to alleviate this problem
somewhat by more sophisticated incorporation of prior knowledge
about RNA structure into CM parameter estimation, guided by
Bayesian methods (10, 66). Our current Bayesian prior
probability distributions are subjective rather than derived directly
from known RNA alignments.

In vitro RNA evolution and selection techniques have been
devised to select novel small RNA sequences for particular
functions, often for protein binding but also for catalysis. These
techniques are being used to study the catalytic and structural
repertoire available to RNA (19—21, 33), and for the ‘irrational’
(67) design of potential pharmaceuticals. The consensus structure
and sequence of the resulting small RNA families is often
apparent to the eye, but can sometimes be rather elusive. We
expect that CMs may prove especially suited to the analysis of
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sequence families generated by such RNA selection and evolution
experiments.
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